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Abstract

A primary goal of social science research is to understand how latent group mem-
berships predict the dynamic process of network evolution. In the modeling of inter-
national conflicts, for example, scholars hypothesize that membership in geopolitical
coalitions shapes the decision to engage in militarized conflict. Such theories explain
the ways in which nodal and dyadic characteristics affect the evolution of relational
ties over time via their effects on group memberships. To aid the empirical testing
of these arguments, we develop a dynamic model of network data by combining a
hidden Markov model with a mixed-membership stochastic blockmodel that identifies
latent groups underlying the network structure. Unlike existing models, we incorpo-
rate covariates that predict node membership in latent groups as well as the direct
formation of edges between dyads. While prior substantive research often assumes
the decision to engage in militarized conflict is independent across states and static
over time, we demonstrate that conflict patterns are driven by states’ evolving mem-
bership in geopolitical blocs. Changes in monadic covariates like democracy shift
states between coalitions, generating heterogeneous effects on conflict over time and
across states. The proposed methodology, which relies on a variational approximation
to a collapsed posterior distribution as well as stochastic optimization for scalability,
is implemented through an open-source software package.
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1 Introduction

Social scientists often posit theories about the effects of latent groups of actors on relational

outcomes of interest over time. For example, international relations scholars have examined

the so-called “democratic peace” hypothesis, which states that blocs of actors — defined

by their democratic institutions — rarely engage in wars amongst themselves (e.g., Oneal

and Russett, 1999). These theories often define latent groups of actors that underlie the

structures of social and political networks, and stipulate how the formation and evolution

of these groups give rise to various behaviors (Lorrain and White, 1971).

To aid the empirical testing of these theories, we develop a dynamic model of social net-

works that extends the mixed-membership stochastic blockmodel (MMSBM; Airoldi et al.,

2008). The MMSBM is a popular generalization of the stochastic blockmodel (SBM; Wang

and Wong, 1987), which is a factor analytic model for network data characterized by latent

groups of nodes (Hoff, 2009). Unlike the SBM, the MMSBM allows nodes to instantiate a

variety of group memberships in their interactions with other nodes. We extend the classi-

cal MMSBM in three ways. First, we allow memberships in latent groups to evolve over

time according to a hidden Markov process. Second, we define a regression model for both

latent memberships and observed ties, incorporating both dyadic and nodal attributes to

explain the formation of groups and to relax the strict assumption of stochastic equivalence

for members of the same groups. Finally, we define the model in a collapsed parameter

space, using sufficient statistics to summarize large networks and improve computational

scalability.

Our model, which we call dynMMSBM, therefore frees applied researchers from the

need to resort to a commonly used two-step procedure to evaluate theories, whereby mem-

berships are first estimated, and then regressed on covariates of interest (e.g., Wasserman

and Faust, 1994). Furthermore, the proposed model allows for the prediction of group

membership and future network ties of previously unobserved nodes. To facilitate the ap-
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plication of our proposed model, we develop a fast Bayesian inference algorithm by relying

on a variational approximation to the collapsed posterior (Teh et al., 2007), using stochastic

gradient descent to accommodate very large-scale networks while retaining both theoretical

properties of the approximation and practical run times (Hoffman et al., 2013; Gopalan and

Blei, 2013).We offer an open-source software R package, NetMix (available on CRAN)

that implements the proposed methodology.

We use the dynMMSBM to conduct the dynamic analysis of international conflicts

among states over the last two centuries. Political scientists have long sought to explain the

causes of interstate conflict and predict its outbreak. A prominent literature on the “demo-

cratic peace,” for example, explores whether democratic countries constitute a uniquely

peaceful community of states. A significant body of evidence attests to the low rate of

conflict among democratic dyads (e.g., Maoz and Russett, 1993; Oneal and Russett, 1999).

Others argue that the relationship is spurious, driven by impermanent geopolitical coali-

tions that generated common interests among democracies (e.g., Farber and Gowa, 1997;

Gowa, 2011). Analysts of the democratic peace typically want to account for these un-

derlying coalitions, and in particular ask whether democratic political systems encourage

states to enter the same geopolitical blocs — a question our model is designed to address.

When analyzing conflict data, the most common methodological approach is to assume

conditional independence of state dyad-year observations given some covariates within

the generalized linear model framework (e.g., Gleditsch and Hegre, 1997; Mansfield and

Snyder, 2002; Gartzke, 2007; Dafoe et al., 2013). Recent analyses, however, have turned

to network models to relax this conditional independence assumption. Maoz et al. (2006),

for instance, use a measure of structural equivalence among dyads as a covariate in the

logistic regression. In turn, Hoff and Ward (2004) employ random effects to explicitly

model network dependence in dyadic data, and Ward et al. (2007) apply the latent space

model developed by Hoff et al. (2002) to international conflict. Similarly, Cranmer and
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Desmarais (2011) propose and apply a longitudinal extension of the exponential random

graph model (ERGM) to conflict data. We build on this emerging body of scholarship that

seeks to model complex dependencies in the conflict network.

Methodologically, our work extends the growing literature on dynamic modeling of

network data that exhibit some degree of stochastic equivalence. In addition to the SBM,

a variety of models are generally available to accommodate such networks. For instance,

the latent position cluster model (Handcock et al., 2007) and the recently developed ego-

ERGM (Salter-Townshend and Brendan Murphy, 2015) incorporate equivalence classes

into the latent distance and the ERGM models, respectively. Although the more flexible

SBM (and all SBM-based models, such as ours) can capture disassortative relationships that

these other models have a harder time accommodating, they all share the highly restrictive

assumption that nodes play a single role in all their interactions.

Models like the overlapping/multiple-membership SBM (Latouche et al., 2011; Kim

and Leskovec, 2013) or the MMSBM (Airoldi et al., 2008) fully address this issue by al-

lowing nodes to belong to multiple equivalence classes. Typically, however, these models

are limited by the fact that they assume independence of group memberships over time and

across nodes, as well as independence of dyads conditional on the equivalence structure.

This makes it difficult to accommodate networks that display both stochastic equivalence

and some degree of heterogeneity across nodes (e.g., networks that have very skewed de-

gree distributions).

Subsequent work therefore focuses on relaxing some of these independence assump-

tions. For instance, Sweet et al. (2014) incorporates dyadic covariates into the MMSBM,

thus allowing for connectivity patterns that are not exclusively the result of the stochastic

equivalence structure. And White and Murphy (2016) incorporates node-specific attributes

as predictors of the mixed-membership vectors, thus eliminating the assumption that all

nodes in an equivalence class are exchangeable. Recent work by Yan et al. (2019) has
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shown that likelihood-based estimators of these covariate effect parameters have desirable

asymptotic properties, lending further confidence in the validity of these extensions. The

proposed dynMMSBM derives from these developments, allowing for dyadic covariates at

the edge-formation stage and for nodal predictors of the mixed-membership vectors.

Even more attention has been devoted to relaxing the assumption of independence of

networks observed over time, resulting in important advances to apply the MMSBM in dy-

namic network settings (e.g. Xing et al., 2010; Ho and Xing, 2015; Fan et al., 2015). As

most social networks have a temporal dimension, being able to model the dynamic evolu-

tion of relational outcomes is of paramount importance to applied researchers. However,

while these models offer flexible approaches to accounting for temporal dynamics, they

often rely on continuous state space approaches like the Kalman filter, making it difficult

to periodize a network’s historical evolution.

Since researchers typically periodize history into distinct “epochs” to make sense of a

phenomenon’s evolution, more discrete approaches to network dynamics would be better

suited to the typical needs of social scientists. Accordingly, the dynMMSBM relies on a

hidden Markov process to capture the evolution of equivalence class-based network forma-

tion. Furthermore, by assuming that the blockmodel itself (i.e. the matrix of edge propensi-

ties across and within latent classes) remains constant over time—so that only memberships

into classes are allowed to evolve—we avoid the issues of identification raised by Matias

and Miele (2017) that affect some of the earlier dynamic MMSBM specifications.

To the best of our knowledge, our model is the first to tackle the need to incorporate

dyadic and nodal attributes as well as the need to account for temporal dynamics simulta-

neously, in an effort to develop an effective model that can be readily employed in applied

research.
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2 Challenges In The Study of the Interstate Conflict Net-

work

The study of interstate conflict is of great interest to international relations scholars and

policy makers. The ability to predict violent political clashes has attracted a large and

growing literature on conflict forecasting (e.g., Schrodt, 1991; Beck et al., 2000; Ward et al.,

2013; Hegre et al., 2017). In addition, scholars have sought to understand how specific

political institutions, processes, and power asymmetries affect war and peace among states

(e.g., Barbieri, 1996; Oneal and Tir, 2006; Hegre, 2008).

While empirical studies of interstate conflict are commonly conducted assuming con-

ditional independence of dyad-year observations (e.g., Maoz and Russett, 1993; Farber and

Gowa, 1997; Goldsmith, 2007; Gowa, 2011; Dafoe et al., 2013), there are reasons to be-

lieve conflict patterns violate this assumption. For centuries, states have managed conflict

through formal and informal coalitions. Alliances, for example, affect the probability of

conflict both among allied states and between allies and non-allies. Many militarized con-

flicts (most notably, the World Wars) are multilateral in nature: states do not decide to

engage in conflict as a series of disconnected dyads, but are drawn into war or maintain

peace as a result of their membership in preexisting, often unobserved groups.

Statistical models of network formation are a natural way to account for these cross-

sectional and temporal dependencies. While recent applications use network models to

re-examine the democratic peace debate (e.g., Hoff and Ward, 2004; Ward et al., 2007;

Cranmer and Desmarais, 2011), existing methods are hindered by several challenges. First,

they do not directly model the evolving geopolitical coalitions that shape patterns of con-

flict. Such a model would more closely reflect the theoretical mechanisms explaining why

democracies form a distinct community of states that have achieved a “separate peace”

among themselves. This behavior may arise from the norms of compromise prevalent in
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democratic societies (Maoz and Russett, 1993), the ability of democratic states to credi-

bly signal their intentions (Fearon, 1994), or the process by which democracies select into

conflicts (Bueno de Mesquita et al., 2004).

A second limitation is the need to restructure monadic covariates like democracy to fit

a dyadic level of analysis. This problem has exacerbated a debate in the democratic peace

literature regarding the appropriate dyadic specification of democracy (see Dafoe et al.,

2013). An ideal model would directly incorporate nodal variables at the country level by

embedding them within the generative process of group formation. Finally, most existing

methods do not provide flexibility for the effect of democracy to vary over time, despite

theoretical claims that it should do so (Farber and Gowa, 1997; Cederman, 2001).

In the following section, we propose a model that overcomes these shortcomings. The

dynMMSBM could uncover a democratic peace by identifying a latent group that exhibits

low rates of intra-group conflict and that democratic states are more likely to join. Other

hypotheses in this literature — for example, the possibility of a similar “dictatorial peace”

among autocratic states (Peceny et al., 2002), interactions between democracy and power

asymmetries (Bueno de Mesquita et al., 2004), and variation in the strength of the demo-

cratic peace over time (Gleditsch and Hegre, 1997; Cederman, 2001) — are also easily

accommodated by the model structure. Each latent group is associated with its own set

of nodal covariates, obviating the need to restructure monadic variables, and the dynamic

implementation provides flexibility for covariate effects to vary over time.

3 The Proposed Methodology

Using the history of interstate conflict networks to study the democratic peace theory re-

quires a model that not only defines the probability of conflict as a function of membership

into latent groups of countries, but that also enables the exploration of how these mem-

berships evolve over time and how they are informed by country-level characteristics —

particularly regime type. Furthermore, for practical use, the model must deal with the
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computational complexity involved in estimating a dynamic network model with a large

number of nodes.

In this section, we describe a modeling approach that addresses these needs. We first

define a general regression model for networked data, and then derive a fast estimation

algorithm based on a stochastic variational approximation to the collapsed posterior distri-

bution over the model’s parameters. While we focus our exposition on directed networks,

our model applies to undirected networks with minimal modifications, as we illustrate in

our application.

3.1 The Dynamic Mixed-Membership Stochastic Blockmodel

Let Gt = (Vt, Et) be a directed network observed at time t, with node-set Vt and edge-set

Et. For a pair of nodes p, q ∈ Vt, let Ypqt = 1 if there exists a directed edge from node

p to q, and Ypqt = 0 otherwise. Each node i ∈ Vt is assumed to be associated with a K-

dimensional mixed-membership vector πit, encoding the extent to which i belongs to each

of K latent groups at time t.

To study how these mixed-memberships vary as a function of node-level predictors,

and to allow such memberships to evolve over time, we further assume that the network

at time t is in one of M latent states, and that a Markov process governs transitions from

one state to the next. We then model each mixed-membership vector as a draw from the

following Markov-dependent mixture,

πit ∼
M∑
m=1

Pr(St = m | St−1)× Dirichlet
(
{exp(x>itβkm)}Kk=1

)
(1)

where the vector of predictors xit is allowed to vary over time and the vector of coefficients

βkm for group k is indexed by state m in the Markov process. Our model thus extends the

traditional MMSBM by allowing the mixed membership vectors to not only be a function

of node-level predictors, but also by letting these vectors to change over time as the Markov

states evolve. Specifically, these random states are generated according to St | St−1 = n ∼
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Categorical(An), which is governed by a transition matrix A and the state at the previous

time period, St−1. We define a uniform prior over the initial state S1 and independent

symmetric Dirichlet prior distributions for the rows of A.

The model is completed by defining a K ×K blockmodel matrix B, with its Bgh ∈ R

element giving the propensity of a member of group g to form a tie to a member of group

h (for undirected network data, B is a symmetric matrix). Thus, we have,

Ypqt ∼ Bernoulli
(
g−1

(
z>p→q,tBwq←p,t + d>pqtγ

))
(2)

where g−1 is the logistic function, and zp→q,t ∼ Multinomial(πpt) is an indicator vector

for the group that node p chooses when interacting with node q at time t (and similarly for

wq←p,t). To relax the assumption of strict stochastic equivalence commonly used in other

variants of the stochastic blockmodel, we also incorporate dyadic predictors dpqt into the

regression equation for the probability of a tie, with regression coefficients γ.

Put together, the data generating process can be summarized as follows:

1. For each time period t > 1, draw a historical state St | St−1 = n ∼ Categorical(An).

2. For each node i at time t, draw state-dependent mixed-membership vector

πit | St = m ∼ Dirichlet
(
{exp(x>itβk,m}Kk=1)

)
.

3. For each pair of nodes p and q at time t,

- Sample a group indicator zp→q,t ∼ Multinomial(πpt).

- Sample a group indicator wq←p,t ∼ Multinomial(πqt).

- Sample a link between them Ypqt ∼ Bernoulli
(
g−1

(
z>p→q,tBwq←p,t + d>pqtγ

))
.

This data generating process results in the following joint distribution of observed network

data and latent variables given a set of global hyper-parameters (β,γ,B) and observed
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covariates (D,X):

P (Y,L,Π,A | β,γ,B,D,X)

= P (S1)

[
T∏
t=2

P (St | St−1,A)

][
T∏
t=1

∏
it∈Vt

P (πit | X,β, St)

]
M∏
m=1

P (Am)

×

[
T∏
t=1

∏
p,q∈Vt

[
P (Ypqt | zp→q,t,wq←p,t,B,γ,D)P (zp→q,t | πpt)P (wq←p,t | πqt)

] (3)

where L := {Z,W,S} collects all latent group memberships and hidden Markov states,

Π := {πit}it∈Vt∀t collects all mixed-membership vectors, and transition matrix A is de-

fined as before.

3.2 Marginalization

As we discuss in more detail in Section 3.3, we derive a factorized approximation to the

posterior distribution proportional to Equation (3) in order to drastically reduce the com-

putation time required for inference. A typical approximating distribution would factor-

ize over all latent variables. In the true posterior, however, latent group indicators zp→q,t

(wq←p,t) and the mixed-membership parameters πpt (πqt) are usually strongly correlated

(Teh et al., 2007). Similarly, the Markov states St and parameters in the transition kernel

A are typically highly correlated in the true posterior.

Therefore, and to avoid the strong assumption of independence induced by the standard

factorized approximating distribution, we marginalize out the latent mixed-membership

vectors and the Markov transition probabilities and then approximate the marginalized

posterior. The details of the marginalization can be found in Appendix A.1. Letting

αitkm = exp(x>itβkm), αit·m =
∑K

k=1 αitkm, and θpqtgh = g−1(Bgh + d>pqtγ), the result-

9



ing collapsed posterior is proportional to:

P (Y,L | β,γ,B,X)

∝
M∏
m=1

[
Γ(Mη)

Γ(Mη + Um·)

M∏
n=1

Γ(η + Umn)

Γ(η)

]

× P (s1)
T∏
t=2

M∏
m=1

∏
it∈Vt

[
Γ(αit·m)

Γ(αit·m + 2Nt)

K∏
k=1

Γ(αitmk + Citk)

Γ(αitmk)

]I(St=m)

×
T∏
t=1

∏
p,q∈Vt

K∏
g,h=1

(
θ
ypqt
pqtgh(1− θpqtgh)

1−ypqt
)zp→q,t,g×wq←p,t,h

(4)

where I(·) is the binary indicator function, and Γ(·) is the Gamma function. The marginal-

ized joint distribution makes explicit use of a number of sufficient statistics:

Citk =
∑

q∈Vt(zi→q,t,k + wi←q,t,k), which represent the number of times node i instan-

tiates group k across its interactions with all other nodes q present at time t (whether

as a sender or as a receiver); Umn =
∑T

t=2 I(St = n)I(St−1 = m), which counts

the number of times the hidden Markov process transitions from state m to state n; and

Um· =
∑T

t=2

∑
n I(St = n)I(St−1 = m), which tracks the total number of times the

Markov process transitions from m (potentially to stay at m).

3.3 Estimation via Variational Expectation-Maximization

For posterior inference, we rely on a mean-field variational approximation to the collapsed

posterior distribution (Jordan et al., 1999; Teh et al., 2007). To do so, we define a factorized

distribution over the latent variables L as

Q̃(L | K,Φ,Ψ) =
T∏
t=1

Q1(st | κt)
∏
p,q∈Vt

Q2(zp→q,t | φp→q,t)Q2(wq←p,t | ψq←p,t), (5)

where κt, φp→q,t, and ψq←p,t are variational parameters. Our factorized approximation

assumes the latent state variables are independent in the collapsed space. This is a strong

assumption, but one that has been found to strike a good balance between accuracy and

scalability (see ?).

We then apply Jensen’s inequality to derive a lower bound for the log marginal proba-
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bility of our network data Y

P (Y | β,γ,B,X) ≥ L , EQ̃[logP (Y,L | β,γ,B,X)]− EQ̃[log Q̃(L | K,Φ,Ψ)] (6)

and optimize this lower bound with respect to the variational parameters to approximate

the true posterior over our latent variables (Jordan et al., 1999). To do so, we iterate be-

tween finding an optimal Q̃ (the E-step) and optimizing the corresponding lower bound

with respect to the hyper-parameters B, β and γ (the M-step).

After initializing all sufficient statistics and variational parameters, our E-step begins

by updating the φ parameters for all (pt, qt) dyads in our data as follows:

φ̂
(s)
p→q,t,k ∝

M∏
m=1

[
exp
[
Ef,Q̃2

[log(αptmk + C ′ptk)]
]]κtm K∏

g=1

(
θ
ypqt
pqtkg(1− θpqtkg)

1−ypqt
)ψq←p,t,g

(7)

where C ′ptk = Cptk − zp→q,t,k and the expectation is taken over the variational distribution

of Z. By symmetry, the update for ψq←p,t,k is similarly defined.

In turn, and for t = 2, . . . , T − 1, we update all hidden Markov state variational param-

eters according to

κ̂
(s)
tm ∝ exp

[
−EQ̃1

[log(Mη + U ′m·)]
]

exp
[
κt+1,mκt−1,m Ef,Q̃1

[log(η + U ′mm + 1)]
]

× exp
[
(κt−1,m − κt−1,mκt+1,m + κt+1,m) Ef,Q̃1

[log(η + U ′mm)]
]

×
∏
n6=m

exp
[
κt+1,n Ef,Q̃1

[log(η + U ′mn)]
] ∏
n6=m

exp
[
κt−1,n Ef,Q̃1

[log(η + U ′nm)]
]

×
∏
pt∈Vt

[
Γ(αit·m)

Γ(αit·m + 2Nt)

K∏
k=1

EQ̃1
[Γ(αptmk + Cptk)]

Γ(αptmk)

]
,

where U ′m· = Um· − st,m and U ′mn = Umn − stmst+1,n. This definition of the term U ′mn is

valid whenever m 6= n and t 6= T (for other cases, see Appendix A.2).

In order to avoid a costly computation of the Poisson-Binomial probability mass func-

tion (which is required when computing expected values that involve sufficient statistics),

we approximate the expectations in these updates by using a zeroth-order Taylor series ex-

pansion, so that Ef,Q̃2
[log(αptkm + C ′ptk)] ≈ log

(
αptkm + Ef,Q̃2

[
C ′ptk

])
and similarly for

terms involving all U ′· counts (Asuncion et al., 2009).
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Finally, during the M-step, we find locally optimal values of B, β and γ with respect

to the lower bound, given by

Lφ,κ(B,β,γ) ,
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

log Γ (ξptm)− log Γ (ξptm + 2Nt)

+
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

K∑
k=1

EQ̃[log Γ(αptmk + Cptk)]− log Γ(αptmk)

+
T∑
t=1

∑
(p,q)∈Et

K∑
g,h=1

φp→q,t,gψq←p,t,h {ypqt log(θpqtgh) + (1− ypqt) log(1− θpqtgh)}

−
T∑
t=1

M∑
m=1

∑
(p,q)∈Et

K∑
k=1

{φp→q,t,k log(φp→q,t,k)− ψq←p,t,h log(ψq←p,t,k)}

(8)

using a quasi-Newton method.1 To regularize the fit, we define independent standard Nor-

mal priors for all parameters. When required, standard errors for these quantities are ob-

tained by first sampling from the approximate posteriors of the latent variables, and then

obtaining expected values of the log-posterior Hessian evaluated at the approximate MAP

estimates of β, γ, and B.

3.3.1 Stochastic VI Algorithm

For problems involving large networks, the above variational approximation can be very

computationally intensive (even after parallelization — see section 3.4). To enable fast

inference on a set of networks with a very large number of nodes over multiple time periods,

we define an alternative optimization strategy which relies on the stochastic gradient ascent

approach proposed by Hoffman et al. (2013), as applied to our collapsed variational target

(Foulds et al., 2013; Dulac et al., 2020).

Like other stochastic VI (SVI) algorithms, ours follows a random gradient with ex-

pected value equal to the true gradient of the lower bound in Equation 8. To form this

unbiased gradient, and at each step of the algorithm, we sample a mini-batch of nodes

within each time period t uniformly at random, and form subgraphs Y
(s)
t among all dyads

1We provide the needed gradients in Appendix A.2.
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containing the sampled nodes. The algorithm proceeds by optimizing the local variational

parameters (i.e. Φ and K) for all dyads (p, q) in each Y
(s)
t using the updates given in

the previous section, holding global counts constant at their most current values. We then

condition on these locally updated variational parameters and obtain an intermediate value

of all global counts (i.e. C and U) by computing their expected value under the mini-

batch sampling distribution. We finalize each step by updating these global counts using a

weighted average, as follows:

C(s) = (1− ρs)C(s−1)
t + ρs Ef [Ct] ; U

(s)
t = (1− ρs)U(s−1) + ρs Ef [U] (9)

where we set the step-size ρs = (τ + s)−p, and p ∈ (0.5, 1.0] and τ ≥ 0 are researcher-set

arguments controlling the extent to which previous iterations affect current values of the

sufficient statistics (Hoffman et al., 2013; Cappé and Moulines, 2009). To set the values

of our hyperparameters we once again follow an empirical Bayes approach, updating the

hyper-parameters along with the global sufficient statistics by taking a step in the direction

of the gradient of the stochastic lower bound. For instance, and for the γ coefficients, we

have:

γ(s) = γ(s−1) + ρs∇γL(s)

φ̂,κ̂
(γ) (10)

where

L(s)
φ,κ(γ) =

T∑
t=1

|Et|
|E(s)

t |

∑
(p,q)∈E(s)

t

K∑
g,h=1

φp→q,t,gψq←p,t,h
{
ypqt log(θpqtgh)

+ (1− ypqt) log(1− θpqtgh)
}

is a random function that is equal to the third line in Equation 8 in expectation. The updates

for all other hyper-parameters are similarly defined (Hoffman et al., 2013), and provide the

required gradients in Appendix A.2.

When using the correct schedule for the step-sizes ρs, this procedure is guaranteed to

find a local optimum of the lower bound without the need to perform a costly update over
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the parameters associated with alls dyads at every iteration (Gopalan and Blei, 2013), and

we illustrate gains in scalability of our SVI approach in Appendix A.3.4.

3.4 Implementation Details

Like other mixed-membership models, there are important practical considerations when

fitting the dynMMSBM. First, finding good starting values is essential. In particular, the

quality of starting values for the sufficient statistics in the C global terms proved to be

highly consequential. In our experience, two approaches worked similarly well: an ini-

tial clustering based on a spectral decomposition of the network’s adjacency matrix (Jin

et al., 2018), and taking a few samples from the posterior of the simpler mixed-membership

stochastic blockmodel (without covariates) of Airoldi et al. (2008). We apply these strate-

gies separately to each time-stamped network, and resolve the ensuing label-switching

problem by re-aligning the (assumed constant) blockmodels using a graph matching al-

gorithm (Lyzinski et al., 2014).

Second, and to establish convergence of our collapsed variational algorithm, we evalu-

ate absolute change in the estimated hyper-parameters, and stop iterating when all changes

fall below a user-defined tolerance level (1.0e−4 in our application). In the case of the SVI

algorithm, we retain a small sample of dyads (viz. 1% of all pairs in our application) before

initialization and evaluate its log-likelihood after each iteration, stopping when change falls

below a tolerance of a0−3 or when no improvement has been observed in the past 10 itera-

tions. The stopping rule based on a held-out sample helps us avoid overfitting, and reduces

the amount of “jitter” induced by the stochastic gradient descent. Finally, and to maximize

computational efficiency, we exploit the assumption of conditional independence across

edges and optimize local parameters Φ in parallel across (subsampled) dyads.

In Appendix A.3, we conduct a series of validation simulations, in which we evaluate

the estimation accuracy using a set of simulated dynamic networks, and compare the results

of fitting a fully specified dynMMSBM and fitting a separate MMSBM (without covariates)
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to each time period. We show the substantial gains in error reduction resulting from the use

of our proposed model. Next, and having defined a suitable model for our data, we turn to

the study of the issue of the democratic peace.

4 Empirical Analysis

We now apply the dynMMSBM to study the onset of militarized disputes among 216 states

in the years 1816–2010, based on the Militarized Interstate Dispute (MID) dataset version

4.1 (Ghosn and Bennett, 2003).2 We show that the proposed model uncovers the essen-

tial geopolitical coalitions that drive conflict patterns and generates novel insights into the

heterogeneous effect of key covariates, like democracy. Finally, we demonstrate that the

dynMMSBM outperforms the standard logistic regression model in forecasting future con-

flicts.

4.1 The Setup

We model conflict as an undirected network in which ties arise from states’ evolving mem-

bership in six latent groups. While the substantive results presented below are not con-

ditional on the number of latent groups, we found that six provided sufficient flexibility

to model different types of evolving coalitions that can be qualitatively interpreted. Six

latent groups also performed well in out-of-sample prediction tests (see Table A2 in Ap-

pendix A.4 for prediction tests and Figures A7 and A8 for a visualization of blockmodel

estimates for specifications with five and seven groups).

A MID occurs when one state engages in a government-sanctioned “threat, display

or use of military force” against “the government, official representatives, official forces,

property, or territory of another state” (Jones et al., 1996, 168). Ties in the network are

2Our primary results reflect a batch analysis of the data, taking all years into consideration. In Ap-

pendix A.5, we use out-of-sample prediction to evaluate forecasting performance. In Appendix A.4, we

replicate our analysis via online updating, where we iteratively expand the time window to update estimates

in real time (see Table A7 and Figures A9 and A10).
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formed when a new dispute occurs between two states; subsequent years of the same dis-

pute are coded as 0. The onset of a MID is a relatively rare event, occurring in approxi-

mately 0.4% of the 842,685 state dyad-year observations in our sample.

We include two node-level covariates xpt — the degree of democracy in a state’s do-

mestic government and the state’s military capability — that are hypothesized to influence

membership in the latent groups (Maoz and Russett, 1993; Hegre, 2008). We measure lev-

els of democracy using the variable POLITY, from the Polity IV dataset (Marshall et al.,

2017). States are assigned a polity score each year ranging from −10 to 10, with higher

values representing more democratic political institutions. The mean polity score in our

sample is −0.43. Roughly six percent of state years are assigned the minimum score of

−10, and 16% receive the maximum of 10. Moreover, to measure the military capability

of states (MILITARY CAPABILITY), we use version 5.0 of the composite index (CINC

scores, Singer et al., 1972), and take the log to account for its skewed distribution. The as-

sociation between these covariates and the latent group memberships is assumed to depend

on two hidden Markov states.

In addition, we include four dyadic variables dpqt that are expected to predict conflicts

beyond the effects of the equivalence classes induced by the blockmodel. These include a

dichotomous indicator for a formal alliance between states in a given year (ALLIANCE);

data on alliances comes from version 4.1 of the COW Formal Alliances dataset (Gibler,

2009). We also include geographic distance (DISTANCE) and the presence of a contigu-

ous border (BORDER) between states (Stinnett et al., 2002).3 A count of common mem-

berships in international organizations (IO CO-MEMBERSHIPS) addresses the possibility

that interaction in these organizations decreases conflict (Oneal and Russett, 1999). Fol-

lowing the literature, we control for further temporal trends using a count of years since

the last militarized dispute between each dyad and a cubic spline (Beck et al., 1998). Fi-

3As an alternative way to address geographic effects, we estimate a specification that includes a set of

regional indicator variables (see Table A5 and Figures A5 and A6 in the appendix).
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Figure 1: Estimated blockmodel in the conflict network. The left panel displays the
adjacency matrix of militarized disputes between 216 states. Black squares indicate the
existence of at least one MID between the states in row x and column y; dotted lines separate
states by estimated group membership. The middle panel displays the estimated probability
of conflict between groups as a heat map. The right panel is a network graph summarizing
the estimated blockmodel, where size of the nodes (circles) reflects aggregate membership
in each group and weighted edges (lines) reflect the probability of conflict.

nally, to account for the missing values of some predictors, we rely on a missing-indicator

approach, adding dummy variables that indicate which observations have missing values

in the corresponding variable, and replacing all missing values with zero.

The model is fitted using our open-source software package NetMix. Estimation took

one hour and eighteen minutes on a computer with a 3.6Ghz CPU, converging after 709

EM iterations. Note that the estimation time drops to approximately 55 minutes without

the optional Hessian computation, which calculates standard errors for the blockmodel,

monadic, and dyadic coefficients.

4.2 Memberships in the Latent Groups

The dynMMSBM allows us to characterize membership in each latent group as well as

the expected relationships between them. Figure 1 illustrates how patterns of interstate

conflict inform the estimation of group memberships. The left panel shows the 216 ×

216 adjacency matrix of militarized disputes between countries, aggregated over the entire

time period. Black squares indicate the existence of at least one MID between the country

represented by row x and the country in column y. The dynMMSBM assigns each country

to a mixture of the six latent groups, each of which initiates disputes at unique rates. In
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the matrix, we sort countries by estimated group membership – demarcated in the figure by

dotted lines – to demonstrate the varying rates of conflict within and between groups.

The middle panel of Figure 1 shows the estimated rates of conflict between groups. For

example, group 1 has elevated rates of intra-group conflict as well as frequent conflict with

groups 2 and 5, as evidenced by the darker shade of these cells in the figure. Groups 4 and

5 have the most peaceful relations, initiating disputes with each other only 0.14% of the

time. Table A3 of Appendix A.4 presents the exact blockmodel estimates used to create

the figure.

The right panel combines information on group membership and dispute rates, depict-

ing each latent group as a node on a graph. The size of the nodes (circles) reflects the esti-

mated membership size of the group. Group 3 is the most populous, representing 39.9% of

country-year observations in the sample. Group 2 is the second largest (27.2%), followed

by Groups 4 (16.2%), 6 (10.4%), 5 (3.3%), and 1 (2.9%). The edges (lines) depict the

estimated rates of conflict between groups, with darker-shaded edges indicating a higher

propensity of conflict onset.

To gauge the validity of these estimates, we examine whether the group assignments

and dispute probabilities correspond to known historical conflict patterns. Our model es-

timates that when a country from Group 1 interacts with a country from Group 2, there is

an unusually high probability (13.7%) that a militarized dispute will occur between them.

Probing the mixed-membership vectors of individual states reveals that these two groups

capture geopolitical divisions between blocs of powerful states. The United States, Canada,

United Kingdom, and their Western European allies often instantiate Group 1, while China,

Russia, and other Eastern bloc countries tend to instantiate membership in Group 2.

Other groups also reveal important structure in the international system. Group 3 in-

cludes many countries that maintained a foreign policy of neutrality throughout much of

the 19th and 20th centuries (e.g., Norway, Finland, Ireland, and Costa Rica). Despite their
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formally neutral stance, these states maintained close diplomatic relations with the Western

allies that populate Group 1. According to the blockmodel, these Group 3 countries have

a low rate of conflict with Group 1 (1.7%) and are less bellicose overall. Group 4 includes

many countries that were caught in the crossfire of the intense geopolitical conflict between

the Western and Eastern coalitions represented by Groups 1 and 2. Afghanistan, Angola,

and Cambodia are among the countries with high membership in Group 4 that were sites

of proxy conflicts during the Cold War period. Group 5 is composed of many autocratic

countries in the Middle East and Africa, while Group 6 features small or geographically

remote countries.

A closer evaluation of estimated memberships during the Cold War period lends further

credence to the validity of the model. As noted earlier, the Cold War period was defined

by a geopolitical rivalry between an Eastern bloc, led by the Soviet Union, and a Western

bloc, led by the United States and its NATO allies. To see if the dynMMSBM can recover

the underlying geopolitical structure of the Cold War era, we identify the 15 countries

with the highest average membership probability in each latent group during the period of

1950–1990. We do this by computing 1
T

∑1990
t=1950 πptg for every country in a given latent

group g. The countries with the highest membership in each group are listed in Table A4

of Appendix A.4.

The distribution of countries across the groups is consistent with presence of competing

geopolitical coalitions during the Cold War. Group 1 contains the major NATO allies,

including the United States, United Kingdom, West Germany, Italy and Canada. Non-

NATO members that sided with the NATO, including Japan and Australia, also instantiate

Group 1 at high rates. Group 2 consists of the Soviet Union and its allies in the Eastern

bloc (Russia/Soviet Union, China, East Germany, Poland, Czechoslovakia, and Romania).

The estimated blockmodel indicates the competing coalitions experience abnormally high

rates of conflict.
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Figure 2: Membership in Latent Groups over Time. The figure shows the average pro-
portion of membership in six latent groups for each year from 1816–2010.

4.3 The Dynamics of Membership

The dynMMSBM further allows us to examine how latent group membership changes over

time. Figure 2 displays the evolution of group membership from 1816-2010. Latent groups

expand and contract as countries move in and out of geopolitical coalitions. Group 2 —

populated by autocratic countries with high military capacity — noticeably declines in

membership throughout the period. This reflects a general trend toward democratization

among industrialized countries, as well as geopolitical transitions of the Soviet client states

after the Cold War concluded. The most peaceful clusters, Group 3 and 4, increase in mem-

bership over the period, which may be attributable to the consolidation of norms against

military aggression. In the post-World War II era, decolonization and independence move-

ments led to a substantial increase in the number of independent countries. This likely

accounts for the late growth of Group 6 — a cluster representing small countries with

limited military capability.

The evolution of groups shown in Figure 2 are consistent with international relations
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Figure 3: Average Node Membership over Time, Select Countries. The figure shows,
for six countries, the average rate of membership in four latent groups in each year the
country is present in the network.

scholarship emphasizing dynamic change in conflict patterns. Cederman (2001), for ex-

ample, proposes a dynamic learning process in which democratic countries consolidate

peaceful relations over time. The observed growth of Group 3 — a cluster populated by

democracies with very low rates of conflict — supports this hypothesis.

Figure 3 displays the evolution of group membership for a select group of countries.

There is significant variation across countries and within some countries over time. The

United States and United Kingdom feature relatively high membership in Group 1 com-

pared to other countries, as discussed above. They also exhibit significant membership in

Group 3, the other Western-leaning and democratic cluster. US membership is compara-

bly stable over the period of the study, while the UK consolidates its membership in these

groups after transitioning to a democratic political system. For example, we observe a sharp

increase in the UK’s membership in Group 3 following the 1867 Reform Act, which newly

enfranchised parts of the urban working class. Russia’s membership is overwhelmingly
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dominated by Group 2. At the end of the Cold War, the implosion of the Soviet system

shifts Russian membership toward Group 3 with a slight reversion in the last few years.

Japan, Cuba, and Iraq further demonstrate how political shocks like revolution and for-

eign intervention affect conflict patterns in ways that are reflected in latent membership.

Japan experiences a sudden shift from Group 2 to Groups 1 and 3 upon its defeat in World

War II and subsequent occupation by American forces. The shift in membership corre-

sponds with a clear change in the country’s conflict patterns. Japan’s overall rate of conflict

declined from 2.7% prior to 1945 to 0.7% thereafter. More than 60% of Japan’s disputes in

the post-1945 period were with Group 2 members Russia, China, and North Korea.

Cuba’s membership in Group 2 increases sharply following the onset of the Cuban

Revolution and the ascension of the Castro regime. The country experiences consistently

high Group 2 membership since the 1950s, with a slight attenuation in the last few decades.

In turn, Iraq features two breaks in latent membership that correspond to conflicts with the

United States. Following the first Gulf War in 1990-1991, we observe reduced membership

in Group 2 and increases in Groups 3 and 4. A similar shift in 2003 reflects the invasion

by the US and allied countries and the installation of a new government.

4.4 Covariate Effects

The dynMMSBM also enables the examination of covariate relations that can help charac-

terize the nature of each estimated latent group. The upper panel of Table 1 displays co-

efficient estimates for the monadic covariates POLITY and MILITARY CAPABILITY.

The estimates represent the effect of each covariate on the log-odds of membership in each

latent group. In the interest of space, and since the majority of the time period under study

(viz. 51.3%) is estimated to derive from this state, we display the coefficients only for

Markov state 1. See Table A6 in Appendix A.4 for Markov state 2 coefficients.

Democratic regimes (i.e., those with high POLITY scores) are most likely to instanti-

ate membership in Groups 1 and 3. This is consistent with the interpretation of Group 1 as
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Predictor Dyadic Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

INTERCEPT 12.016 16.539 11.383 12.376 8.836 7.389
(1.069) (1.069) (1.069) (1.069) (1.074) (1.066)

POLITY 0.083 -0.251 0.076 -0.115 -0.091 -0.091
(1.084) (1.083) (1.084) (1.083) (1.096) (1.079)

MILITARY 0.638 1.192 0.130 0.513 0.235 -0.134
CAPABILITY (1.029) (1.029) (1.025) (1.029) (1.048) (1.059)

BORDERS 2.123
(0.001)

DISTANCE -0.0001
(0.002)

ALLIANCE 0.087
(0.001)

IO CO-MEMBERS 0.009
(0.002)

PEACE YRS -0.021
(0.002)

N nodes: 216; N dyad-years: 842, 685; N time periods: 195
Lower bound at convergence: −527, 587.7

Table 1: Estimated Coefficients and their Standard Errors. The table shows the es-
timated coefficients (and standard errors) of the two monadic predictors for each of six
latent groups, as well as those of the dyadic predictors for edge formation. We present
the results from the first Markov state, which accounts for the majority of the time period.
The estimated coefficients for cubic splines and indicators for variable missingness are not
shown.

the Western alliance of liberal democracies during the Cold War, and Group 3 as Western-

leaning neutral states. Notably, these two democratic clusters exhibit significantly different

patterns of conflict. Group 1 countries have a high rate of military disputes, both with other

Group 1 members (18.2%) and with other groups (7.7%). Group 3 countries are signifi-

cantly more consistent with the democratic peace hypothesis. Predicted conflict between

members of this group are rare (0.14%), and they also have a lower dispute rate with other

latent groups (2.3%).

Other monadic coefficients are largely consistent with the descriptive patterns discussed

above. Autocratic regimes sort into Group 2 at the highest rate. Greater military capabil-

ity is negatively associated with membership in Group 6 and positively associated with

membership in the other clusters.

In addition to obtaining estimates for the coefficients in our model, we can also predict

how the probability of conflict changes as a function of the node’s monadic covariates. In
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the generative process of the model, group memberships are instantiated for each dyad in

each time period. As a result, countries in the conflict network are assigned to a latent

group each time they interact with another country in a given year. Because the probability

of edge formation depends on the group membership of both nodes in a dyad, a change

in one node’s monadic predictor will yield heterogeneous effects across dyads, nodes, and

time.

For example, consider the change in predicted conflict propensity when each country’s

POLITY score is increased by one standard deviation (6.78), making sure scores increase

only up to the maximum value (10). The overall average effect of this change on the

probability of edge formation, averaging all dyadic interactions and time periods,

1

T

T∑
t=1

1

|Vt × Vt|
∑
p,q∈Vt

[E(ypqt | POLITY + 6.78)− E(ypqt)]

is negative but negligible in size: -0.001. Thus, increasing the degree of democracy in a

country results in a minor decrease in overall conflict, given the underlying geopolitical

coalitions throughout the time period.

There is, however, a significant amount of heterogeneity in this effect across countries

and over time. Figure 4 shows, for a large set of countries, the difference in expected

probability of interstate conflict due to an increase of one standard deviation in POLITY

score. Many countries (such as Germany, Russia, and Iraq) are predicted to be substantially

more peaceful, on average, if they were more democratic during the period of the study.

Others, however, experience very little change in conflict behavior (e.g., Australia and

Nicaragua). A handful of countries are estimated to become more conflict prone (e.g.,

Kosovo, Montenegro, and Brunei). An increase in polity shifts these countries into different

latent groups that are more conflictual, on average.

The effect of democracy varies due to the latent group structure of the model. In gen-

eral, shifts in monadic predictors will generate effects that are non-linear and contingent

upon the existing group membership of the node in question and the other nodes in the

24



−0.003 −0.002 −0.001 0.000 0.001

Node−Level Estimated Effect

Germany
Russia

Iraq
Czechoslovakia
Turkey

Iran
Romania

France
Pakistan

India
Syria

Poland
Saudi Arabia

North Korea
Israel
China
Spain
Sudan
Morocco
Brazil
Ukraine
UK
Afghanistan

Ethiopia
Argentina
USA
Indonesia
Netherlands
Japan
Jordan
Belarus
Austria
Sweden
Lithuania
Yemen
Malaysia
Chile
Peru
Switzerland
Georgia
Norway
Cuba
Croatia
Singapore
Finland
Venezuela
Lebanon
South Africa
Ecuador
Ireland
Australia
New Zealand
Costa Rica

Sierra Leone
Nicaragua
Liberia
Iceland
Malta
Brunei
Montenegro

Kosovo

Figure 4: Estimated Effects of Covariate Shift in Polity over Time, Select States.
The figure shows the estimated change in the probability of interstate conflict if a state’s
POLITY score is increased by one standard deviation (6.78) from its observed value.

network. Figure 5 looks within countries to gauge the effect of the shift in POLITY over

time, revealing additional heterogeneity. To illustrate how monadic effects can vary within

countries, consider the sharp drop in the estimated effect of POLITY for Russia from 1918-

1921. This period is preceded by the ascendance of the Bolshevik government, which took

power in November 1917. Over the next few years, the government engaged in a series
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Figure 5: Effect of Shift in Polity over Time, Select States. The figure shows the esti-
mated change in the probability of interstate conflict over time if a country’s POLITY score
is increased by one standard deviation (6.78) from its observed value (up to a maximum of
10).
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Figure 6: Estimated Aggregate Effect of Shift in Polity over Time. The figure shows the
estimated average change in the probability of interstate conflict when countries’ POLITY
scores are increased by one standard deviation (6.78) up to the maximum POLITY score.
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of militarized disputes with the Allied Powers of WWI, who supported anti-communist

forces during the Russian Civil War. This pattern of disputes is consistent with the esti-

mated blockmodel, which predicts an elevated rate of conflict between Group 1 (US, UK,

France, Japan) and Group 2 (Russia). The estimates in Figure 5 compare these patterns of

conflict to a counterfactual world in which Russia had a more democratic political system.

Increasing Russia’s POLITY score from its observed value in 1918 (−1) to a higher value

(6) shifts the expected group membership for Russia away from Group 2 (from 75.4% to

32.4%) and toward Group 3 (from 10.3% to 40.7%). This reduces the likelihood of dis-

putes, since Group 3 has significantly lower rates of inter- and intra-group conflict. By

1922 the Bolshevik regime consolidated power and the country’s POLITY score drops to

−7, after which an equivalent increase in POLITY has a smaller effect.

Figure 6 displays the average effect of POLITY for each year in the time period. An

increase in democracy induces less conflict, on average, throughout most of the sample.

The effect is noticeably lower during the pre-WWII period, hitting a local minimum in

1918 (−0.004). The impact of polity has attenuated in recent years, when the estimated

effect of increasing polity approaches zero.

Finally, dyadic predictors operate outside the latent group membership structure, di-

rectly influencing the probability of conflict among states. In a sense, they serve as con-

trols for alternative networks defined on the same node set. The dyadic coefficient estimates

appear in the bottom panel of Table 1. Consistent with existing work, sharing a border sig-

nificantly increases the likelihood of conflict. Greater geographic distance between states

has no statistically discernible effect on conflict propensity. Somewhat surprisingly, the

presence of a formal alliance and joint membership in international organizations increase

the likelihood of conflict, though these effects are substantively small.

In Appendix A.5, we compare the results of our empirical analysis with those of the

standard logistic regression model, which assumes all dyad-years are conditionally inde-
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pendent and forces all node-level predictors to be transformed into dyadic form. We fur-

thermore emulate the process of analyzing data in real-time by estimating both models

using data from 1816-2008 and then evaluating model performance on what the forecast-

ing predictions would have been during the two following years, 2009 and 2010. We find

that the dynMMSBM significantly outperforms the conventional approach in the Diebold-

Mariano test for forecasting comparison (Diebold and Mariano, 1995). It also marginally

improves on the logistic model in area under the ROC curve, though the difference is not

statistically significant.

5 Conclusion

We have introduced the dynMMSBM, a generalization of the mixed-membership stochas-

tic blockmodel that incorporates dyadic and nodal attributes, and accounts for episodic

temporal evolution of networks using a hidden-Markov process. The proposed model en-

ables researchers to evaluate dynamic theories about the role of individual characteristics

on the generation of relational outcomes when abstract groups of actors are the driving

force behind tie formations. The dynMMSBM also helps identify periods in time when a

network exhibits distinctive patterns of interactions among actors.

Using a network defined by almost 200 years of militarized interstate disputes in the

international system, our model uncovers previously understudied spatial and temporal het-

erogeneity in the so called “democratic peace,” whereby regime type is expected to affect

the likelihood that any two countries engage in militarized actions against each other. Our

model also uncovers the evolving nature of unobserved geopolitical coalitions, with mem-

berships that conform to theoretical expectations — with liberal democracies aligned in

one bloc, and more authoritarian regimes aligned in another.

This paper provides applied researchers with a model that can accommodate a vari-

ety of theorized relationships for dynamic network outcomes that display some form of

stochastic equivalence. We make available the open-source R software package NetMix

28



that implements the proposed methodology. In the future, we plan to further extend the

model’s applicability to a variety of outcome variable types. Similarly, and given their

prevalence in social scientific research, we plan to extend the model to accommodate bi-

partite or affiliation networks.
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A Appendix

A.1 Marginalizing the membership vectors and the transition proba-

bilities

In this appendix, we show how to marginalize Π.∫
· · ·
∫ T∏

t=1

∏
p∈Vt

[
M∏
m=1

P (πpt | αptm)stm

] ∏
q∈Vt

P (zp→q,t | πpt)P (wp←q,t|πpt) dπ1 . . . dπNt

=
T∏
t=1

∏
p∈Vt

∫ M∏
m=1

[P (πpt | αptm)]stm
∏
q∈Vt

P (zp→q,t | πpt)P (wp←q,t|πpt) dπpt

=
T∏
t=1

∏
p∈Vt

∫ M∏
m=1

[
Γ(ξptm)∏K

k=1 Γ(αptmk)

K∏
k=1

π
αptmk−1
ptk

]stm ∏
q∈Vt

K∏
k=1

π
zp→q,t,k

ptk π
wp←q,t,k

ptk dπpt

=
T∏
t=1

∏
p∈Vt

M∏
m=1

[
Γ(ξptm)∏K

k=1 Γ(αptmk)

]stm

×
∫ K∏

k=1

π
∑M

m=1 stmαptmk−1
ptk

∏
q∈Vt

K∏
k=1

π
zp→q,t,k

ptk π
wp←q,t,k

ptk dπpt

As they share a common base, we can simplify the products and defineCptk =
∑

q∈Vt(zp→q,t,k+

wp←q,t,k) to show that the above equation is equivalent to,

T∏
t=1

∏
p∈Vt

M∏
m=1

[
Γ(ξptm)∏K

k=1 Γ(αptmk)

]stm ∫ K∏
k=1

π
∑M

m=1 stmαptmk+Cptk−1
ptk dπpt

The integrand can be recognized as the kernel of a Dirichlet distribution. As the integral

is over the entire support of this Dirichlet, we can easily compute it as the inverse of the

corresponding normalizing constant,

T∏
t=1

∏
p∈Vt

M∏
m=1

[
Γ(ξptm)∏K

k=1 Γ(αptmk)

]stm ∏
k Γ(

∑M
m=1 stmαptmk + Cptk)

Γ(
∑M

m=1 stmξptm + 2Nt))

where the sum of Cptk over groups k is equal to twice the number of nodes (as nodes must

instantiate at least one group in each of interactions, once as a sender and once again as

a receiver) in directed networks. A simple reorganization of factors (along with the fact

that st,m is an indicator vector, whereby
∑

m stmx =
∏

m x
stm) yields equation (??) in

Section 3.2.
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A.2 Details of the Collapsed Variational Algorithm

A.2.1 Expectation Steps

E step 1: Z and W

To obtain the updates of the φp→q,t variational parameters, we begin by restricting equa-

tion (??) to the terms that depend only on zp→q,t (for specific p and q nodes in Vt) and

taking the logarithm of the resulting expression,

logP (Y,Z,W,S,B,β,γ | X,D)

= zp→q,t,k

K∑
g=1

wq←p,t,g {ypqt log(θpqtkh) + (1− ypqt) log(1− θpqtkh)}

+
M∑
m=1

stm log Γ(αptmk + Cptg) + const.

Now, note that Cptk = C ′ptk + zp→q,t,g and that, for x ∈ {0, 1}, Γ(y + x) = yxΓ(y). Since

the zp→q,t,k ∈ {0, 1}, we can re-express log Γ(αptmk +Cptk) = zp→q,t,k log(αptmk +C ′ptk)+

log Γ(αptmk + C ′ptk) and thus simplify the expression to,

zp→q,t,k

K∑
g=1

wq←p,t,g {ypqt log(θpqtkg) + (1− ypqt) log(1− θpqtkg)}

+ zp→q,t,k

M∑
m=1

stm log
(
αptmk + C ′ptk

)
+ const.

We proceed by taking the expectation under the variational distribution Q̃:

EQ̃{logP (Y,Z,W, s,B,β,γ | D,X)}

= zp→q,t,g

K∑
g=1

EQ̃2
(wq←p,t,g)

(
ypqt log(θpqtkg) + (1− ypqt) log(1− θpqtkg)

)
+ zp→q,t,g

M∑
m=1

EQ̃1
(stm) EQ̃2

{
log
(
αptmk + C ′ptk

)}
+ const.

The exponential of this expression corresponds to the (unnormalized) parameter vector of

a multinomial distribution Q̃2(zp→q,t | φp→q,t). The update for wq←p,t is similarly derived.
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E step 2: S

Isolating terms in Equation ?? that are not constant with respect to stm for a specific t 6= 1

and m, and rolling all other terms into a const., we have

P (Y,Z,W, s,B,β,γ | D,X) = Γ(Mη + Um)−1
M∏
m=1

M∏
n=1

Γ(η + Umn)
∏
p∈Vt

[
K∏
k=1

Γ(αptmk + Cptk)

Γ(αptmk)

]stm

+ const.

To isolate terms that depend on stm for specific t > 1, m and n 6= m, define the following

useful quantities:

U ′m = Um − stm

U ′mm = Umm − st−1,mstm − stmst+1,m

U ′nm = Unm − st−1,mstm

U ′mn = Umn − stmst+1,n

Focusing on the terms involving Um and Umn, and working on a typical case in which

1 < t < T , we can isolate parts that do not depend on stm by again recalling that, for

x ∈ {0, 1}, Γ(y + x) = yxΓ(y):

Γ (Mη + stm + U ′m)
−1

Γ(η + st+1,mstm + st−1,mstm + U ′mm)

×
M∏
n 6=m

Γ(η + st+1,nstm + U ′mn)Γ(η + stmst−1,n + U ′nm)

= (Mη + U ′m)−stmΓ(Mη + U ′m)−1
{

(η + U ′mm + 1)st+1,mst−1,m(η + U ′mm)st−1,m−st−1,mst+1,m+st+1,m
}stm

× Γ(η + U ′mm)
M∏
n6=m

(η + U ′mn)st+1,nstmΓ(η + U ′mn)
M∏
n6=m

(η + U ′nm)stmst−1,nΓ(η + U ′nm)

at which point all Γ(·) terms are constant with respect to stm and can be rolled into the

normalizing constant so that

P (Y,Z,S,B,β,γ | D,X)

= (Mη + U ′m)−stm
{

(η + U ′mm + 1)st+1,mst−1,m(η + U ′mm)st−1,m−st−1,mst+1,m+st+1,m
}stm
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×
M∏
n 6=m

(η + U ′mn)st+1,nstm(η + U ′nm)stmst−1,n

×
∏
p∈Vt

[
Γ(ξptm)

Γ(ξptm + 2Nt)

K∏
k=1

Γ(αptmk + Cptk)

Γ(αptmk)

]stm
+ const.

Taking the logarithm and expectations under the variational distribution Q̃ with respect to

all variables other than stm, we have,

log κ̂tm = −stm EQ̃1
[log(Mη + U ′m)] + stmκt+1,mκt−1,m EQ̃1

[log(η + U ′mm + 1)]

+ stm(κt−1,m − κt−1,mκt+1,m + κt+1,m) EQ̃1
[log(η + U ′mm)]

+ stm

M∑
n 6=m

κt+1,n EQ̃1
[log(η + U ′mn)]

+ stm

M∑
n 6=m

κt−1,n EQ̃1
[log(η + U ′nm)] + stm

∑
p∈Vt

[
Γ(ξptm)

Γ(ξptm + 2Nt)

]

+ stm
∑
p∈Vt

K∑
k=1

EQ̃

[
log

[
Γ(αptmk + Cptk)

Γ(αptmk)

]]
+ const.

This corresponds to a multinomial distribution Q̃1(st|κtm), such that the mth element of

its parameter vector is

κ̂tm ∝ exp
[
−EQ̃1

[log(Mη + U ′m)]
]

exp
[
κt+1,mκt−1,m EQ̃1

[log(η + U ′mm + 1)]
]

× exp
[
(κt−1,m − κt−1,mκt+1,m + κt+1,m) EQ̃1

[log(η + U ′mm)]
]

×
∏
n6=m

exp
[
κt+1,n EQ̃1

[log(η + U ′mn)]
]

exp
[
κt−1,n EQ̃1

[log(η + U ′nm)]
]

×
∏
p∈Vt

[
Γ(ξptm)

Γ(ξptm + 2Nt)

K∏
k=1

EQ̃1
[Γ(αptmk + Cptk)]

Γ(αptmk)

]

which must be normalized. When t = T , the term simplifies to

κ̂Tm ∝ exp
[
−EQ̃1

[log(Mη + U ′m)]
] M∏
n=1

exp
[
κT−1,m EQ̃1

[log(η + U ′nm)]
]

×
∏
p∈VT

[
Γ(ξptm)

Γ(ξptm + 2Nt)

K∏
k=1

EQ̃1
[Γ(αpTmk + CpTk)]

Γ(αpTmk)

]

As before, the expectations can be approximated using a zero-order Taylor expansion.
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A.2.2 Maximization steps

Lower Bound

M-step 1: update for B

Restricting the lower bound to terms that contain Bgh, we obtain

L(Q̃) =
T∑
t=1

∑
p,q∈Et

K∑
g,h=1

φp→q,t,gψq←p,t,h{ypqt log θpqtgh + (1− ypqt) log(1− θpqtgh)}

−
K∑

g,h=1

(Bgh − µgh)2

2σ2
gh

+ const.

We optimize this lower bound with respect to Bgh using a gradient-based numerical opti-

mization method. The corresponding gradient is given by,

∂LBgh

∂Bgh

=
T∑
t=1

∑
p,q∈Et

φp→q,t,gψq←p,t,h (ypqt − θpqtgh)−
Bgh − µBgh

σ2
Bgh

M-step 2: update for γ

Restricting the lower bound to terms that contain γ, and recalling that θpqtgh = [1 +

exp(−Bgh − dpqtγ)]−1, we have

L(Q̃) =
T∑
t=1

∑
p,q∈Et

K∑
g,h=1

φp→q,t,gψq←p,t,h {ypqt log θpqtgh + (1− ypqt) log(1− θpqtgh)}

−
Jd∑
j

(γj − µγ)2

2σ2
γ

+ const.

To optimize this expression with respect to γj (the jth element of the γ vector), we again

use a numerical optimization algorithm based on the following gradient,

∂L(Q̃)

γj
=

T∑
t=1

∑
p,q∈Et

K∑
g,h=1

φp→q,t,gψq←p,t,hdpqtj (ypqt − θpqtgh)−
γj − µγ
σ2
γ

M-step 3: update for βm

Let αptmk = exp
(
x>ptβkm

)
and ξptm =

∑K
k=1 αptmk. To find the optimal value of βkm, we

roll all terms not involving the coefficient vector into a constant:

L(Q̃) =
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

[log Γ(ξptm)− log Γ(ξptm + 2Nt)]
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+
T∑
t=1

M∑
m=1

κtm
∑
p∈Vt

K∑
k=1

[
EQ̃2

[log Γ(αptmk + Cptk)]− log Γ(αptmk)
]

−
K∑
k=1

M∑
m=1

Jx∑
j=1

(βmkj − µβ)2

2σ2
β

+ const.

No closed form solution exists for an optimum w.r.t. βmkj , but a gradient-based algorithm

can be implemented to maximize the above expression. The corresponding gradient with

respect to each element of βmk is given by,

∂L(Q̃)

∂βmkj
=

T∑
t=1

κtm
∑
p∈Vt

αptmkxptj

(
EQ̃2

[ψ̆(αptmk + Cptk)− ψ̆(αptmk)]

+
[
ψ̆(ξptm)− ψ̆(ξptm + 2Nt)

])
− βmkj − µβ

σ2
β

where ψ̆(·) is the digamma function. Once again, we can approximate expectations of non-

linear functions of random variables using a zeroth-order Taylor series expansion. As is the

case of the multinomial logit model, we set β1,m ≡ 0 ∀m, making group 1 a reference for

identification purposes.

A.3 A Simulation Study

Using synthetic dynamic networks, we evaluate the estimation accuracy with respect to

the mixed-membership vectors and the blockmodel matrices under three scenarios: easy,

realistic, and hard learning problems. We also examine the quality of regression coefficient

estimates, and the ability of the model to recover the parameters associated with the under-

lying HMM. Finally, we compare the results of fitting a fully specified dynMMSBM and

fitting a separate MMSBM (without covariates) to each time period, showing the substan-

tial gains in error reduction resulting from the use of our proposed model.

Our synthetic networks are composed of 100 nodes observed over t ∈ {1, . . . , 9} time

periods, and are constructed as follows:

1. For each node pt and dyad pqt at time t > 1, generate a single monadic and dyadic

predictor using a random walk, so that xpt = xp,t−1 + εxt, dpqt = dpq,t−1 + εdt, with
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xp1 ∼ N (0, 2), dpq,1 ∼ N (0, 2), and εxt ∼ N(0, 1), εdt ∼ N(0, 1).

2. For each node at time t, sample a 2-dimensional mixed-membership vector from a

2-component mixture of Dirichlet distributions, so that

πpt ∼
2∏

m=1

[
Dirichlet

(
exp

(
x>ptβm

))]stm
where xpt = [1 xpt]

>, and stm indicates a state m ∈ {1, 2} of the hidden Markov

process, such that st1 = 1 for t ∈ {1, . . . , 5}, st2 = 1 for t ∈ {6, . . . , 9}, and stm = 0

otherwise (i.e. there is a changepoint in the underlying left-to-right HMM between

time-points 5 and 6).

3. For each node pt and qt in directed dyad pqt, sample a pair of group memberships

zpt→qt ∼ Categorical (πpt) and wqt←pt ∼ Categorical(πqt)

4. Finally, and for the same dyad, sample an edge

ypqt ∼ Bernoulli
(
logit−1

(
Bzpt→qt,wqt←pt + γ1dpqt

))
where γ1 = 0.25.

To explore the conditions under which the model performs best, as well as those under

which learning the model’s various parameters can be particularly challenging, we refine

this data-generating process by defining three sets of values forB and β designed to gener-

ate easy, realistic, and hard learning scenarios. They differ in the extent to which member-

ships are truly mixed (with more clearly defined memberships being easier to learn), and

with respect to the extent to which the blockmodels generate distinct equivalence classes

of nodes (with more clearly defined block structures being easier to learn). Accordingly,

each scenario’s DGP is completed using the parameters in presented in Table A1.

Generating a single, 9-period network under each of these scenarios results in the mixed

memberships depicted in Figure A1, which shows the density of membership into the first

of two groups across all nodes and time periods. While the ‘easy’ scenario has very clearly
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Easy Realistic Hard

g−1(B) =

0.85 0.01

0.01 0.99


0.65 0.35

0.20 0.75


0.45 0.10

0.20 0.55



β1 =

−4.5 −4.5

0.0 0.0


 0.05 0.75

−0.75 −1.0


 1.5 1.5

−0.75 −1.0



β2 =

−4.5 −4.5

0.0 0.0


−0.05 0.55

−0.75 0.75


 2.5 0.5

−0.75 0.75


Table A1: Parameters in three different dynamic network DGPs. The three columns

correspond to three types of networks, varying in terms of inferential complexity. In turn,

the rows contain the corresponding values of the blockmodel B and the regression coeffi-

cient vectors β, one for each state of the HMM.

defined memberships of most nodes into one of the underlying groups, the ‘hard’ scenario

has a substantial number of nodes whose membership is decidedly more mixed. The more

‘realistic’ scenario has a non-negligible number of nodes whose membership is mixed, and

a distinct group imbalance in favor of the second group.

A.3.1 Accuracy of estimation: mixed-memberships and blockmodels

Overall, and as expected, the accuracy with which dynMMSBM can retrieve the true

mixed-membership vectors depends on the problem’s complexity. The top panel of Fig-

ure A2 shows the estimated mixed-membership values against their known, true values,

evidencing a decrease in estimation accuracy as we move from an easy to a hard inferential

task. Despite the clear deterioration, dynMMSBM is still able to produce good quality

estimates even under hard inferential situations, with estimates that have a 0.82 correlation

with their true values.

The model is also able to accurately estimate the blockmodel structure, as the bottom

row of Figure A2 reveals. For each cell of the blockmodels, the true probability of an
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Easy Realistic Hard

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.5

1.0

1.5

Membership in Group 1

Figure A1: Simulated mixed-memberships in synthetic networks. The plots depict the
mixed-membership vectors of nodes in three simulated networks, each with 100 nodes ob-
served over 9 time periods. It shows the memberships of nodes in networks generated
under an ‘easy’ DGP (i.e. one where memberships are not mixed, and in which the block
structure is clear), ‘hard’ (i.e. one where memberships are extremely mixed, and no block
structure is apparent in the network) and ‘realistic’ (i.e. where some nodes display a mix-
ture of group memberships, and a block structure is somewhat apparent in the network) on
the left, right, and central panels, respectively.

edge between members of any two groups is shown in white letters, while the cell itself

is colored in accordance to the corresponding estimated values. Once again, and although

the quality of these estimates (predictably) decreases as the inferential complexity of the

scenario increases, the estimation error remains low.

A.3.2 Estimation accuracy: regression coefficients

The two most distinctive features of the proposed model are its ability to incorporate pre-

dictors of the mixed-membership vectors and to account for network dynamics. We eval-

uate the accuracy with which our proposed estimation strategy recovers known parameter

values. To do so, we simulate 100 replicates of the 9-period network described above,

generated under our more ‘realistic’ DGP and holding all design matrices constant across

replicates. After generating all 50 networks, we use our model to obtain estimates of the ef-

fect of the monadic predictor on block memberships, as well as of the marginal probability

that the hidden Markov process is in either of the two states for each time period.

Figure A3 shows, for each time period, the distribution of estimated effect sizes of the

monadic predictor and intercepts for the regression of membership into the second latent

group (as boxplots), along with the true parameter values (shown as a red “x”). We obtain
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Figure A2: Estimation accuracy. For each DGP scenario, the figure shows the estimated
mixed-membership vectors (top row) and the estimated blockmodels (bottom row) against
their known values (indicated by the white numbers in each cell of the blockmodel for
the bottom row). Overall, accuracy of retrieval both sets of parameters depends on the
complexity of the learning problem, although recovery is generally very good, even under
‘hard’ inferential conditions.
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Figure A3: Estimated parameters of block membership regression. The figure shows,
for each time period, the HMM-weighted effect of a continuous predictor on the probability
of instantiating latent group 2 (left panel), and the HMM-weighted intercept of the corre-
sponding regression line (right panel), estimated on 100 networks generated according to
our realistic DGP. In each instance, the red “x” indicates the true parameter value for that
time period, given a known HMM state.
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estimates for each time period by computing the weighted average of estimated parame-

ters in the two hidden Markov states, using estimated marginal probabilities over states in

each time period as our weights. The model is typically able to identify the underlying

Markov state that generated the networks, which in turn translates into correctly estimated

(albeit regularized) effects of the monadic covariate on membership probabilities. Qual-

ity of recovery for regression parameters associated with a given block depends heavily

on the extent to which that block is commonly instantiated in the network. And although

changes in intercepts across time periods are also correctly recovered, the intercepts them-

selves tend to be overestimated. This phenomenon, which we found to be common in all

our simulations, is likely the result of the difficulty in pinning down the precision of the

latent membership vectors. Despite these issues, the mean of the memberships is correctly

recovered (as shown earlier in Figure A2).

A.3.3 Comparison to alternative modeling approaches

Finally, and to further evaluate the benefits of modeling the dynamic nature of the network,

we estimate a separate MMSBM model to the networks in each time period, and compare

their estimated mixed-memberships to those of a single dynMMSBM estimated on the full

set of networks. In both cases, we omit all covariates, but estimate the αptm parameters

associated with the mixed-membership vectors. After estimating both sets of models on

each of the 50 replications of the “realistic” networks, we compute the average L2 error in

estimated mixed-memberships across nodes. The results are presented in Figure A4.

In general, dynMMSBM performs consistently better than the MMSBM estimated on

each time period, and the latter shows much more variability in terms of accuracy. A ma-

jor challenge for the per-year approach consists of realigning the estimated group labels,

which (under the assumptions of our model) should be done by realigning the cells of the

blockmodel, as all other parameters (such as the mixed-memberships themselves) are sub-

ject to change overtime. Being estimated using just a fraction of the data, however, the

blockmodels obtained in the per-year approach prove too noisy to be useful in the realign-
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Figure A4: Error for estimated mixed membership vectors. The figure shows average
L2 distances between estimated and true mixed-membership vectors for all nodes in each of
50 replicated dynamic networks. On the left, estimates are generated using dynMMSBM.
On the right, estimates are generated using the canonical MMSBM, fit separately to the
nine time periods in each simulated network.

ment exercise, thus contributing to the variable accuracy of the non-dynamic approach. In

contrast, dynMMSBM is able to recover the underlying blockmodel much more accurately,

thus contributing to the correct estimation of the latent memberships across simulations.

A.3.4 Results with Stochastic Variational Inference

A.4 Additional Empirical Results

# Groups AUROC
2 0.966

(0.020)
3 0.989

(0.012)
4 0.986

(0.013)
5 0.984

(0.014)
6 0.986

(0.013)
7 0.975

(0.017)

Table A2: Out of Sample Prediction, Different Latent Groups. The table displays the
area under the ROC curve (AUROC) and associated standard error for specifications with
2-7 Latent Groups. Each model is fit on data from 1816-2008 and used to forecast conflict
in the period 2009-2010.
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Figure A5: Estimated blockmodel in the conflict network (regional model). Block-
model visualizations for a specification including an indicator for state region. The left
panel displays the adjacency matrix of militarized disputes. The middle panel displays the
estimated probability of conflict between groups as a heat map. The right panel is a net-
work graph summarizing the estimated blockmodel. The blockmodel in this specification
is moderately correlated (0.30) with the primary model.
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Figure A6: Membership in Latent Groups over Time (regional model). The figure
shows the average proportion of membership in six latent groups for each year from 1816–
2010. The estimated evolution of membership in this specification is similar in some re-
spects to the primary specification (e.g., the steady decline of Group 2 membership over the
time period), but differs in others (e.g., the larger size of Group 6 in this model). Notably,
this specification does not experience transitions in the hidden Markov state. This may be
attributable to the addition of indicators for state region, which are static over time.

13



Figure A7: Estimated blockmodel in the conflict network (5-group specification). The
left panel displays the adjacency matrix of militarized disputes between 216 states. The
middle panel displays the estimated probability of conflict between groups as a heat map.
The right panel is a network graph summarizing the estimated blockmodel.

Figure A8: Estimated blockmodel in the conflict network (7-group specification). The
left panel displays the adjacency matrix of militarized disputes between 216 states. Dotted
lines separate states by estimated group membership; some groups are not visible in the
adacency matrix since they have very low membership. The middle panel displays the
estimated probability of conflict between groups as a heat map. The right panel is a network
graph summarizing the estimated blockmodel.
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Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Group 1 0.182 0.137 0.017 0.004 0.180 0.047

Group 2 0.137 0.105 0.068 0.028 0.018 0.011

Group 3 0.017 0.068 0.014 0.017 0.011 0.003

Group 4 0.004 0.028 0.017 0.009 0.001 0.004

Group 5 0.180 0.018 0.011 0.001 0.049 0.044

Group 6 0.047 0.011 0.003 0.004 0.044 0.030

Table A3: Group-Level Edge Formation Probabilities. The table displays the probability
of interstate conflict between nodes that instantiate membership in each of six latent groups.
The diagonal shows rates of intra-group conflict and off-diagonal shows rates of conflict
between groups.
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Figure A9: Membership in Latent Groups over Time (online update model). The
figure shows the average proportion of membership in six latent groups for each year from
1816–2010. Estimates are derived from specifications using expanding five-year windows.
We first fit a model for the years 1816–1820, then use the resulting mixed membership
estimates as starting values for the next window (1821-1825). We repeat until all years are
included. Membership patterns are positively correlated with the primary model (0.37),
but the evolution of membership differs in several ways. Group 2 is significantly larger
throughout the period, and the late increases in Group 4 (beginning in 2000) and Group 6
(beginning in 2005) are more pronounced.
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Group 1 Group 2 Group 3
0.158 USA 0.972 Russia 0.888 Costa Rica
0.138 UK 0.969 China 0.88 New Zealand
0.138 Japan 0.827 Germany East 0.878 Ireland
0.137 India 0.81 Poland 0.874 Jamaica
0.132 West Germany 0.766 Czechoslovakia 0.868 Norway
0.115 Italy 0.763 Korea North 0.866 Finland
0.109 France 0.747 Romania 0.863 Denmark
0.100 Canada 0.744 Iran 0.862 Switzerland
0.082 Belgium 0.743 Indonesia 0.859 Luxembourg
0.081 Australia 0.728 Taiwan 0.847 Mauritius
0.08 Netherlands 0.703 Egypt 0.843 Austria
0.069 Turkey 0.69 Saudi Arabia 0.838 Trinidad-Tobago
0.065 Sweden 0.685 Mexico 0.832 Sweden
0.062 South Africa 0.682 Yugoslavia 0.829 Cyprus
0.056 Austria 0.68 Vietnam North 0.827 Israel
Group 4 Group 5 Group 6
0.319 Yemen 0.188 Djibouti 0.849 Liechtenstein
0.296 Brunei 0.187 Bhutan 0.825 St Kitts-Nevis
0.276 Bahamas 0.173 Guinea-Bissau 0.775 Antigua-Barbuda
0.274 Singapore 0.173 Swaziland 0.747 Vanuatu
0.27 Cambodia 0.155 Comoros 0.737 Dominica
0.269 Angola 0.151 Equatorial Guinea 0.737 St Vincent-Grenadines
0.263 Senegal 0.145 Qatar 0.726 St Lucia
0.261 Mozambique 0.145 Bahrain 0.678 Western Samoa
0.257 Tanzania 0.142 Gabon 0.674 Grenada
0.253 Tunisia 0.136 Cape Verde 0.671 Seychelles
0.251 Namibia 0.134 Malawi 0.65 Belize
0.249 Afghanistan 0.13 Oman 0.644 Sao Tome Principe
0.248 Nepal 0.125 Lesotho 0.618 Maldives
0.244 Ghana 0.122 St Kitts-Nevis 0.516 Barbados
0.243 Kenya 0.117 Mauritania 0.515 Comoros

Table A4: States with Highest Membership in Latent Groups, Cold War period. To
identify the states with highest membership in each latent group, we average over each
states’ latent membership probabilities in the years 1950-1990. Average group member-
ship is reported beside the state name for the top 15 states in each latent group. The group
assignments are consistent with known geopolitical coalitions in the Cold War, with West-
ern allies in Group 1, Eastern bloc countries clustered in Group 2, Western-leaning neutral
states in Group 3, and states engulfed in proxy conflicts in Group 4.
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Group 1 Group 2 Group 3
0.159 Zanzibar 0.659 Russia 0.771 New Zealand
0.099 Djibouti 0.636 Egypt/UAR 0.715 Solomon Is
0.094 Bhutan 0.55 China 0.71 Ireland
0.092 Cape Verde 0.532 USA 0.704 Papua New Guinea
0.09 Mauritania 0.531 Syria 0.689 Norway
0.089 Central African Rep 0.523 Israel 0.686 Finland
0.089 Niger 0.52 Iran 0.685 Luxembourg
0.089 Burundi 0.514 Iraq 0.684 Denmark
0.089 Mali 0.497 Algeria 0.682 Switzerland
0.089 Nepal 0.483 Namibia 0.646 Malaysia
0.089 Botswana 0.48 Morocco 0.643 Cyprus
0.088 Libyan 0.464 Libyan 0.64 Austria
0.087 Equatorial Guinea 0.46 Brazil 0.626 Australia
0.087 Sri Lanka/Ceylon 0.425 Poland 0.617 Sweden
0.087 Burkina Faso/UV 0.416 North Yemen 0.575 Belgium
Group 4 Group 5 Group 6
0.525 Yemen 0.47 Vanuatu 0.561 St Lucia
0.47 Bhutan 0.466 Western Samoa 0.561 St Vincent-Grenadines
0.44 Oman 0.381 Brunei Darussalam 0.561 Grenada
0.438 Qatar 0.362 Mongolia 0.56 Dominica
0.437 Pakistan 0.344 Gabon 0.56 Antigua-Barbuda
0.436 Saudi Arabia 0.334 Maldives 0.558 St Kitts-Nevis
0.42 Afghanistan 0.328 Malawi 0.557 Belize
0.416 Bahrain 0.317 Liechtenstein 0.555 Barbados
0.391 Bangladesh 0.315 Cambodia/Kampuchea 0.517 Bahamas
0.335 Iran 0.309 Korea North 0.469 Zanzibar
0.334 Tanzania/Tanganyka 0.309 Cape Verde 0.443 Mauritius
0.326 Trinidad-Tobago 0.301 Cote d’Ivoire 0.431 Panama
0.326 Guatemala 0.301 Guinea 0.406 Malta
0.314 India 0.292 Equatorial Guinea 0.404 Trinidad-Tobago
0.3 Lebanon 0.287 Seychelles 0.397 Iceland

Table A5: States with Highest Membership in Latent Groups, Cold War period (re-
gional model). Average group membership in the years 1950-1990 is reported beside the
state name for the top 15 states in each latent group. The group assignments are largely
similar to the main specification. Nodes with high membership in Groups 3-6, for example,
reflect many of the same countries as in A4. The most notable difference in this specifica-
tion is the grouping of Western and Eastern bloc countries into a single, highly belligerent
latent group (Group 2): Russia, China, and the United States are prominent members of
this group, as are France and the United Kingdom (not shown).
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Predictor Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

INTERCEPT 10.420 16.239 12.357 11.622 4.457 4.549
(1.021) (1.021) (1.021) (1.021) (1.060) (1.064)

POLITY −0.005 −0.137 0.209 0.052 −0.201 −0.157
(0.914) (0.913) (0.913) (0.913) (1.047) (1.062)

MILITARY 0.363 1.017 0.237 0.163 −0.443 −0.556
CAPABILITY (1.063) (1.062) (1.062) (1.061) (1.062) (1.064)

N nodes: 216; N dyad-years: 842, 685; N time periods: 195
Lower bound at convergence: −527, 587.7

Table A6: Estimated Coefficients and their Standard Errors, Markov State 2. The
table shows the estimated coefficients (and standard errors) of the two monadic predictors
for each of six latent groups in the second Markov state. The estimated coefficients for
cubic splines and indicators for variable missingness are not shown.
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Figure A10: Average Node Membership over Time, Select States (online update
model). The figure shows, for six states, the average rate of membership in six latent
groups in each year the state is present in the network. Estimates are derived from specifi-
cations using expanding five-year windows. We first fit a model for the years 1816–1820,
then use the resulting mixed membership estimates as starting values for the next window
(1821-1825). We repeat until all years are included. The estimated evolution of state mem-
bership is broadly consistent with the primary specification used in Figure 3, with some
previously observed structural breaks more pronounced (e.g., Russia at the end of the Cold
War, Iraq in 1991) and others attenuated (Japan in 1945) or absent (Cuba in the 1950s).
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Predictor Dyadic Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

INTERCEPT 3.802 6.544 3.531 2.223 5.223 1.804
(1.066) (1.069) (1.069) (1.069) (1.074) (1.069)

POLITY −0.009 −0.104 0.002 0.013 0.0164 0.011
(1.079) (1.083) (1.083) (1.084) (1.096) (1.084)

MILITARY 0.005 0.309 0.021 −0.112 0.175 −0.005
CAPABILITY (1.059) (1.028) (1.029) (1.029) (1.048) (1.025)

BORDERS 2.453
(0.002)

DISTANCE -0.0001
(0.004)

ALLIANCE 0.084
(0.003)

IO CO-MEMBERS 0.001
(0.004)

PEACE YRS -0.019
(0.004)

N nodes: 216; N dyad-years: 842, 685; N time periods: 195
Lower bound at convergence: −155, 058.1

Table A7: Estimated Coefficients and their Standard Errors (online update model).
The table shows the estimated coefficients (and standard errors) of the two monadic pre-
dictors for each of six latent groups, as well as those of the dyadic predictors for edge
formation. Estimates are derived from specifications using expanding five-year windows.
We first fit a model for the years 1816–1820, then use the resulting mixed membership
estimates as starting values for the next window (1821-1825). We repeat until all years are
included. We report coefficient estimates for the final model (2006-2010.
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A.5 Comparison with Logistic Regression

In this appendix, we compare the forecasting performance of the dynMMSBM to that of

the standard logistic regression model prevalent in the democratic peace literature. We

fit this regression model to the same interstate conflict data organized in the dyad-year

format using the identical set of predictors. The only difference is that, in keeping with the

convention in the literature, we transform the monadic variables (POLITY and MILITARY

CAPABILITY) to a dyadic structure. We follow the conventional approach to specifying

POLITY by including two separate variables measuring the democracy level of the less

democratic country and that of the more democratic country in a dyad (e.g., Dafoe et al.,

2013). The MILITARY CAPABILITY variable is restructured as the ratio of the more

powerful state’s military capability to the less powerful state’s military capability.

We then conduct an out-of-sample forecasting exercise on the years 2009-2010, which

were excluded from our initial sample. We follow Goldstone et al. (2010) in using a 2-

year window for out-of-sample validation. We use the parameters of the dynMMSBM

and logit models to predict the onset of conflict for dyad-years in the 2009–2010 period.

Because the models include peace years and cubic splines as predictors, we impute these

variables based on estimated probabilities of conflict in the out-of-sample set. To impute,

we first forecast conflict in the year 2009 and then sample from the predicted probabilities

of conflict to update the peace years variable for each dyad. For the dynMMSBM, we let

the network evolve according to the estimated Markov transition probabilities.

We evaluate the predictive accuracy of both models by comparing their predictions with

the observed pattern of conflict in 2009–2010. First, we conduct a Diebold-Mariano test of

comparative forecasting accuracy (Diebold and Mariano, 1995; Harvey et al., 1997). The

test, which compares mean-squared forecasting error of the two methods, indicates that the

dynMMSBM significantly outperforms the logit model in dispute prediction (DM statistic

= −2.12, p = 0.034).

Second, we compare the receiver operating characteristic curves (ROCs) for each model.
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We display the ROC curves in Figure A11 and show the area under the ROC curves in

A8. By this criterion, the dynMMSBM continues to outperform the logit model but only

marginally. The dynMMSBM has a larger area under the ROC curve, though the difference

is not statistically significant.
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Figure A11: ROC Curve: Logit, Dynamic Mixed-membership SBM Models. To per-
form the forecast, we exclude the final two years (2009-2010) from the dataset and estimate
each model on the preceding years (1816-2008). Then we predict the missing years based
solely on the covariate data.

Model AUROC

dynMMSBM 0.986
(0.013)

Logit 0.973
(0.018)

Table A8: Out of Sample Prediction, dynMMSBM vs. Logit. The table displays the area
under the ROC curve (AUROC) and associated standard error for the two models. Each
model is fit on data from 1816-2008 and used to forecast conflict in the period 2009-2010.
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